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There has been a great deal of work on the fall of an isolated particle through 
a viscous fluid, as well as on the sedimentation of a uniform suspension, but the 
relative motion between neighbouring particles has received much less attention. 
Several interesting effects have been observed (Jayaweera, Mason & Slack 1964) 
and explained (Hocking 1964) with the aid of a fairly simple picture of the viscous 
forces. This approach will be used here to characterize the stability of a long row 
of falling particles with initially uniform separations. 

A single sphere of radius a, drifting at  a velocity U through a viscous liquid of 
viscosity p, experiences a drag force 

E; = 67rpaU. (1) 

If a second sphere is placed in the flow field of the first, it is swept along, and falls 
faster that it would alone. The effective drag force on both particles is reduced by 
the interaction of their flow fields to approximately (Happel & Bremner 1965, 
ch. 6 )  

where d is the separation between the spheres, and a/d < 1. 

PD = 6npaU{1- g(a/d)}, (2) 
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FIGURE 1. Two spherical particles drifting through a viscous liquid. 

If the particles are drifting at an angle 0 to the horizontal, an additional 
force acts along the line of centres, 

FLC = 6npaU($(a/d)) sin 0 (3) 

as sketched in figure 1. The horizontal component of these forces tends to make 
both spheres glide to one side. 

If there are only two particles, the forces on both are equal, and there is no 
relative motion. The addition of more particles, however, makes relative dis- 
placements possible. Consider the configuration of three spheres shown in figure 2 
in which the centre sphere is drifting ahead of its two neighbours. All three 
spheres experience a drag reduction due to their interaction with their neigh- 
bours, but this reduction is larger for the centre sphere, since it has two neigh- 
bours. As a result, it falls faster, and tends to move ahead of its neighbours. 

If the particles are taken two at  a time, the glide forces are identical for each 
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pair, but their resultant on the centre sphere has no lateral component. This 
causes the leading sphere to fall vertically, while its neighbours glide over to it. 
The net effect of all these forces is to form a cluster of particles in the wake of the 
leading particle, leaving open channels where the trailing particles have migrated 
laterally. 

FIGURE 2. Three spherical particles drifting through a viscous liquid. 

2. Theory 
In  order to model the interactions which occur when a long row of solid particles 

drifts through a viscous liquid, we will consider an infinitely long row of identical 
spheres of radius a distributed (with constant spacing) along a straight line. As a 
result of an externally applied force, such as gravity or an electric field, the 
particles drift at  right angles to their line of centres with a velocity U .  Under 
these conditions, the forces on all the particles are identical, so that the particles 
maintain their configuration. 

If any particle is given a small perturbation (figure 3) from this equilibrium, 
however, it will experience a net force which may drive the particle even farther 
from equilibrium, and lead to instability and breakup of the entire layer. If the 
particles are not too close together (a/d @ 1) this force may be approximated by 
summing the forces which would act on the particle as a result of its interaction 
with its two nearest neighbours. This perturbation force consists of two compon- 
ents : a drag component which is anti-parallel to the drift velocity, and a lateral 
force which leads to clustering of the particles. 

The drag force on the nth sphere may be obtained by summing the forces 
exerted by its two nearest neighbours : 

where <is the horizontal displacement of the sphere from its equilibrium position. 
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When 6 is very small, the perturbation force may be approximated as 

6 n ~ U ( @ / d ~ )  (En+l-  tn-1) .  

Note that this perturbation force does not depend on the position of the nth 
particle, but only on the net separation between its two neighbours. 

The force along the line of centres appears only when neighbouring particles 
have different vertical positions. For small vertical displacements (7) of neigh- 
bouring particles 

and the perturbed line-of-centres force acts in the horizontal direction with a 
magnitude 

sin0 N ( v n + l - ? I n ) / d  

( 5 )  FLC = ~ ~ P u U ( $ J / ~ ~ )  (Vn+l-Vn- l )*  

X 

FIGURE 3. Perturbations in the originally uniform row of particles. 

Equations of motion for the perturbed position of the nth sphere are obtained 
by equating the drag force on the sphere to the viscous forces due to interactions 
with its nearest neighbours : 

aTn/at = - a[En+l -  En-11, (6) 

atn/at = a [ q n + l -  7n-11, ( 7 )  

where u = $(a/d)  ( U p ) .  (8) 

E n , V n X e ’ e  3 

For an infinite array of particles, these equations have solutions of the form 

t j knd  

where k is the wave-number of the perturbation. Substitution of this expressim 
into (6), ( 7 )  gives a relation between the growth rate and wave-number which 
must be satisfied for a solution, namely 

p2 = 4u2sin2(kd). (9) 

This condition is the dispersion relation for perturbations of the particle positions. 
To determine whether the initial equilibrium is stable, we must examine the 
time dependence of the perturbations for all allowed leal values of wave-number 
k. Because the system is periodic, there are limits to real values of k which corre- 
spond to physically meaningful solutions. The shortest allowed wavelength, 
which occurs when alternate particles move in opposite directions, is hmin = 2d, 
corresponding to a maximum allowed wave-number of 

2n n 
lc,,, = - - - - 

Amin d ’  
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The solution of the dispersion relation (9), 

/3 = 2ct sin (kd) ,  
is plotted in figure 4 over the allowed range 

0 G kd < n. 
There are two branches to the dispersion relation. In one branch, /l is always 
positive, while in the other p is negative. Since the perturbation is proportional 
to e@, that mode with positive p will grow exponentially in time, indicating 
instability for all allowed wave-numbers. The mode with negative p, on the 
other hand, is stable because it decays with time. 
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FIGURE 4. The growth rate of the viscous instability as a function of the wave-nunibcr of 
the disturbance. -, nearest-neighbour theory; - - -, theory with all neighbours. 

The most unstable mode (p  = + 2 4 ,  which occurs at  kd = in-, has four pa.rticles 
in each wavelength. The appearance of this mode can be deduced from the 
equations of motion and the dispersion relation. If the vertical disturbance a t  
maximum instability is given by 

yo cos (inn) eZat,  (11) 

(12) 

then substitution into the equations of motion gives the horizontal disturbance as 

= - yo sin (inn) e2at. 

The particle displacements and velocit,ies implied by these equations are sketched 
in figure 5 .  The leading particle tends to fall faster as its two neighbours approach 
it, while the trailing particles in the centre of a widening channel tend t,o fall more 
slowly. As the perturbation grows, the leading prticle and its two neighbours 
form a clump which falls through the liquid, leaving every fourth particle behind. 
Thus, an initially uniform layer of particles will not remain uniform when drifting 
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through a viscous liquid. Any small irregularity will be amplified by the viscous 
forces, and eventually the entire layer will break up into clumps of several 
particles, separated by clear channels. The breakup will not usually be as regular 
as that discussed here but, since all possible wavelengths are unstable, the 
breakup will always occur with the clumps and channels containing varying 
numbers of particles. 

The stable mode (p = - 2a) which occurs a t  this wave-number is $so shown in 
figure 5 .  In this case, the leading particle finds itself in the centre of a wide gap, 
and therefore falls slower, while the trailing particle catches up. Thus, this 
mode tends to return to the equilibrium position, as expected from the solution 
of the dispersion relation. 

FIGURE 5. Motion of the particles in the stable and unstable inodes corresponding to 
h = #. (a)  Unstable mode. ( b )  Stable mode. 

So far, the analysis has only considered the force on the nth sphere due to its 
interaction with its nearest neighbours. It is not difficult to extend t,he results 
to the inorc realistic case in which the nth particle is influenced by all of the other 
particles on either side, since the additional forces can be added, due to the 
linearity of the creeping flow equations and the assumption aid 4 1 (Hocking 
1964). The derivation of the equations of motion follows, as before, with the first 
equation given by 

6n,uauar,/at = 67wU(3a/4d2) x - LJ + (1/z2) (tn+2 - + . . . 
+ ( 1 / ~ 2 ) ( 5 , + l - 5 n - l ) +  ... f. (13) 

The only change is the addition of extra terms corresponding to t,he additional 
interactions with particles at greater distances. These terms contain the factor 
1-2, indicating that the force falls off as the inverse square of the separation. 

The second equation of motion is similarly modified, and the dispersion relation 
becomes 
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The solution of this dispersion relation for allowed values of kd is plotted in 
figure 4. The most unstable mode is shifted to longer wavelengths, but the 
maximum growth rate is only slightly affected. 

So far, the growth rate has been discussed in terms of time. Since the particle 
layer is falling with the average velocity U ,  any elapsed time is equivalent to a 
distance 

2 = Ut 

and the disturbance, therefore, grows as 

eBt = ePdu eyz. 

The spatial growth rate, y = #a/d2, (151 

depends only on the geometry of the layer. Since the spatial growth is independent 
of particle velocity, the disturbance of a given layer will be amplified the same 
amount when it falls a given distance, no matter how fast it may be falling. The 
breakup of the layer cannot be modified by changing the drift velocity, but only 
by changing the geometry. 

3. Experiments 
In  order to test this theory, several experiments were performed by dropping 

steel balls through Venice turpentine, whose viscosity was measured as approxi- 
mately 104poise. Since the Reynolds number of the 2% in. balls used in the experi- 
ment was less than 

The experiment was conducted in a glass box, 4in. on each side. For each 
separation distance, d ,  a plastic template was made by drilling +c in. holes equally 
spaced along a straight line. The holes were filled with the liquid used, and a steel 
ball placed in the bottom of each hole. The template containing the balls was 
then positioned slightly below the surface of the liquid. By inserting a rod of 
diameter slightly less than &in. into a hole, the ball and the liquid above it were 
forced out into the bulk of the liquid, where the ball began to fall under gravity. 
Starting the ball slightly below the surface in this manner eliminated the tendency 
to stick to the rod or template, as well as preventing a variable delay in penetrating 
the liquid surface. 

When the balls were started uniformly, the clumping and channelling pre- 
dicted by the theory occurred irregularly. To compare the experiment and the 
theory, it was found more convenient to impose an initial perturbation on the 
particles, and to follow its growth as the particles fell. Since it is difficult to vary 
the horizontal spacing in the template, but relatively easy to vary the vertical 
position by releasing the balls at  different t'imes, the initial perturbation used 
here had only a vertical component. Pictures of the falling spheres released in 
this manner were taken with both multiple and single exposures. 

The qualitative aspects of the predicted instability are immediately apparent 
from these pictures. In the multiple exposure of figure 6 (pIate l) ,  the widening 
channels containing a single particle are clearly visible, while in the single 
exposure of an advanced stage of the instability (figure 7, plate 1) the clumping 
into groups of three is quite striking. 

the Stokes approximation should be valid. 
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The quantitative growth of the disturbance can also be determined from these 
pictures, but, since the initial configuration does not correspond to one of the 
normal modes discussed in the previous section, the disturbance will not grow as a 
simple exponential. The behaviour to be expected can be determined by solving 
the equations of motion with the boundary conditions implied by the experiment: 

&(t = 0) = 0, 

v,(t = 0) = yo cos (nkd) .  

7 = 7, cos (nkd)  cash ( Y X ) ,  

c = yo sin (nkd)  sinh (yz). 

Combination of the two normal modes t o  satisfy this condition gives 

(16) 

(17)  

In  the initial phases of the instability, when 7.z is small, the vertical amplitude 
of the disturbance is approximately constant : 

7 N q,cos (nkd),  

while the horizontal amplitude grows linearly : 

5 T q,(yz) sin (nkd). 

Since the horizontal and vertical amplitudes, as well as z ,  can be measured 
directly from the photographs, the spatial growth rate y can be determined from 

1 amplitude of c 
= amplitude of y 

if the measurements are restricted to the initial phases of growth. 
The growth rate was determined in this manner by taking the multiple 

exposures of the falling balls at  roughly 2 min intervals at  various initial spacings 
ranging from &in. t o  (2 < a/d < 25). Growth rates for perturbations with a 
wave-number of k = n/2d, corresponding to the modes sketched in figure 5 ,  were 
determined. Since the walls affected the fall velocity as well as the growth of the 
perturbation, measurements were taken only for the channels and clumps 
developing in the centre of the row. 

For each value of spacing, the vertical amplitude of the disturbance was 
measured from a photograph similar to figure 6. The growth of the horizontal 
component of the disturbances was then obtained from two separate measure- 
ments. One measurement was made of the widths of the channels at various 
depths, giving an increasing amplitude. Another measurement was made of the 
widths of the clusters which decrease as the spheres fall. In all cases, the growth 
rate for che clusters was less than that for the channels, indicating that the 
instability grows more slowly as the particles approach one another. The growth 
rates for channels and clusters are plotted as a function of aid in figure 8, along 
with the prediction of the nearest-neighbour theory. (The correction for additional 
neighbours, a factor of 0.916, is less than the scatter of the data.) The measured 
growth rates exhibit the same trend as the theoretical predictions with the 
magnitude in all cases somewhat less than expected. This decrease in growth rate 
may be due to the relatively large amplitude needed to observe the instability. 



Instability of a one-dimensional lattice of falling spheres 159 

4. Conclusion 
The experiments described above indicate that the viscous instability pre- 

dicted by the simple theory of 3 2 actually does occur, and that its spatial growth 
is approximated by ey", where y = gala2. 
This result implies that any initial irregularity in a uniform particle distribution 
will be amplified by viscous forces alone. Significant amplification will occur when 
the particle has drifted a small multiple of the separation distance, if this 
separation is not much greater than t h e  particle diameter. Thus, any initially 
uniform particle layer will form clusters as it drifts through a viscous fluid. The 

Ratio of radius to spacing (a/d)  

FIGURE 8. The growth rate of the viscous instability for h = 4d, as determined by: 
-, nearest-neighbour theory; + , experiment. 

distance in which this clustering occurs will be unaffected by changes in the 
particle velocity, as long as the Reynolds number remains small. The preferred 
form of irregularity will consist of small clusters separated by individual particles 
which trail some distance behind. 

I would like to thank Thomas McMullen for his assistance in the construction 
of the apparatus. 
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FIGURE 6. A multiple exposure photograph of a falling row of spheres, showing 
the formation of channels. 

FIGURE 7 .  A single exposure photograph of an advanced stage of the instability, xhoxving 
the triplet clusters, and the trailing particles. 
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